トップ > 製品検索結果一覧 > Code No. D263-3 Anti-CD63 (LAMP-3) (Mouse) mAb

Code No. D263-3

Anti-CD63 (LAMP-3) (Mouse) mAb

価格(税別)

¥48,000

在庫

10以上

(2019/10/20 17:00時点)

包装

100 µg/100 µL

データ
  • Flow Cytometry

クローナリティー Monoclonal クローン R5G2
アイソタイプ
(免疫動物)
Rat IgG2b
使用法
WB
2-10 µg/mL  
FCM
10 µg/mL (final concentration)  
IC*
reported.  (PMID: 20236428
Other(Immuno-EM)
reported.  (PMID: 28956068 / 29669945
免疫原(抗原) Mouse bone marrow stroma cell line ST2
交差性
[Gene ID]

Mouse[12512]

性状 1 mg/mL in PBS/50% glycerol, pH 7.2
保存温度 -20°C 標識 Unlabeled メーカー MBL
別称 ME491, C75951, Tspan30
背景 CD63 is not only expressed on activated platelets, but also activated monocytes and macrophages, and is weakly expressed on granulocytes, T cell and B cells. It is located on the basophilic granule membranes and translocated to cell surface upon various stimuli. The membrane of lytic granules in CTLs contains CD63/LAMP-3 and other lysosomal-associated glycoproteins (LAMPs) such as CD107a/LAMP-1 and CD107b/LAMP-2. LAMPs have been observed on the cell surface as a result of degranulation. CD63 belongs to a member of the tetraspanin transmembrane-protein (TM4) superfamily, which includes CD9, CD37, CD53, CD81, CD82, CD151 and CD231. Several members of this family form noncovalent associations with integrins, particularly b1 integrins (CD29), and modulate cellular adhesion properties. CD63 has a tyrosine-based internalization motif in the cytoplasmic C-terminal tail and interacts with adaptor protein complexes such as AP-2 and AP-3. Because AP-2 and AP-3 are involved in facilitating the clathrin-mediated endocytosis, CD63 could be directly involved in the internalization of its membrane protein partners.
関連製品 MEX002-3 Anti-CD63 (LAMP-3) mAb
MEX001-6 Anti-CD9 mAb-Biotin
MEX002-6 Anti-CD63 (LAMP-3) mAb-Biotin
MEX003-6 Anti-CD81 (TAPA1) mAb-Biotin
MEX001-3 Anti-CD9 mAb
MEX003-3 Anti-CD81 (TAPA1) mAb
MEX002-4 Anti-CD63 (LAMP-3) mAb-FITC
MEX002-12 Anti-CD63 (LAMP-3) mAb-ALP
使用文献
使用文献募集中!本製品を使って論文を発表されましたら是非お知らせください。

Western Blotting

  1. Seto S et al. Differential recruitment of CD63 and Rab7-interacting-lysosomal-protein to phagosomes containing Mycobacterium tuberculosis in macrophages. Microbiol Immunol. 54,170-4 (2010)(PMID:20236428)
  2. Ushio H et al. Crucial role for autophagy in degranulation of mast cells. J Allergy Clin Immunol. 127, 1267-76 (2011)(PMID:21333342)
  3. Bobrie A et al. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles. 1, 18397 (2012)(PMID:24009879)
  4. Padro CJ et al. Adrenergic regulation of IgE involves modulation of CD23 and ADAM10 expression on exosomes. J Immunol. 191, 5383-97 (2013)(PMID:24140643)
  5. Zonneveld MI et al. Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures. J Extracell Vesicles. 3, 24215 (2014)(PMID:25206958)
  6. Groot Kormelink T et al. Prerequisites for the analysis and sorting of extracellular vesicle subpopulations by high-resolution flow cytometry. Cytometry A. 89, 135-47 (2016)(PMID:25688721)
  7. Kowal J et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. PNAS. 113, E968-77 (2016)(PMID:26858453)
  8. Groot Kormelink T et al. Mast Cell Degranulation Is Accompanied by the Release of a Selective Subset of Extracellular Vesicles That Contain Mast Cell-Specific Proteases. J Immunol. 197, 3382-3392 (2016)(PMID:27619994)
  9. Nager AR et al. An Actin Network Dispatches Ciliary GPCRs into Extracellular Vesicles to Modulate Signaling. Cell 168, 252-263.e14 (2017)(PMID:28017328)
  10. Nishida-Aoki N et al. Disruption of Circulating Extracellular Vesicles as a Novel Therapeutic Strategy against Cancer Metastasis. Mol Ther. 25, 181-191 (2017)(PMID:28129113)
  11. Durcin M et al. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J Extracell Vesicles. 6,1305677 (2017)(PMID:28473884)
  12. Iraci N et al. Extracellular vesicles are independent metabolic units with asparaginase activity. Nat Chem Biol. 13, 951-955 (2017)(PMID:28671681)
  13. Laulagnier K et al. Amyloid precursor protein products concentrate in a subset of exosomes specifically endocytosed by neurons. Cell Mol Life Sci. 75, 757-773 (2018)(PMID:28956068)
  14. Krause M et al. Exosomes as secondary inductive signals involved in kidney organogenesis. J Extracell Vesicles. 7, 1422675 (2018)(PMID:29410779)
  15. Obata Y et al. Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. JCI Insight 3, e99680 (2018)(PMID:29669945)

Flow Cytometry

  1. Kunert S et al. The microtubule modulator RanBP10 plays a critical role in regulation of platelet discoid shape and degranulation. Blood 114, 5532-40 (2009)(PMID:19801445)
  2. Ushio H et al. Crucial role for autophagy in degranulation of mast cells. J Allergy Clin Immunol. 127, 1267-76 (2011)(PMID:21333342)
  3. Verjan Garcia N et al. SIRPα/CD172a regulates eosinophil homeostasis. J Immunol. 187, 2268-77 (2011)(PMID:21775684)
  4. Brochetta C et al. Munc18-2 and syntaxin 3 control distinct essential steps in mast cell degranulation. J Immunol. 192, 41-51 (2014)(PMID:24323579)

Immunocytochemistry

  1. Seto S et al. Differential recruitment of CD63 and Rab7-interacting-lysosomal-protein to phagosomes containing Mycobacterium tuberculosis in macrophages. Microbiol Immunol. 54,170-4 (2010)(PMID:20236428)
  2. Ushio H et al. Crucial role for autophagy in degranulation of mast cells. J Allergy Clin Immunol. 127, 1267-76 (2011)(PMID:21333342)
  3. Päll T et al. Soluble CD44 interacts with intermediate filament protein vimentin on endothelial cell surface. PLoS One 6, e29305 (2011)(PMID:22216242)
  4. Lopes da Silva M et al. The host endocytic pathway is essential for Plasmodium berghei late liver stage development. Traffic. 13, 1351-63 (2012)(PMID:22780869)
  5. Bobrie A et al. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles. 1, 18397 (2012)(PMID:24009879)
  6. Krause M et al. Exosomes as secondary inductive signals involved in kidney organogenesis. J Extracell Vesicles. 7, 1422675 (2018) (PMID:29410779)
  7. Obata Y et al. Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. JCI Insight 3, e99680 (2018)(PMID:29669945)
  8. Tanaka Y et al. Adiponectin promotes muscle regeneration through binding to T-cadherin. Sci Rep. 9, 16 (2019)(PMID:30626897)

Immunohistochemistry

  1. Tanaka Y et al. Adiponectin promotes muscle regeneration through binding to T-cadherin. Sci Rep. 9, 16 (2019)(PMID:30626897)

Other(Immuno-EM)

  1. Laulagnier K et al. Amyloid precursor protein products concentrate in a subset of exosomes specifically endocytosed by neurons. Cell Mol Life Sci. 75, 757-773 (2018)(PMID:28956068)
  2. Obata Y et al. Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. JCI Insight 3, e99680 (2018)(PMID:29669945)
製品
カテゴリー
分野
免疫
がん
細胞膜表面抗原
エクソソーム
この製品に関するお問い合わせをする

※在庫につきましては2019年10月20日 17時00分時点における在庫数を表示してあります。
※価格の赤色表示につきましては、キャンペーン価格の表示となっております。
※このサイトからは直接注文はできません。ご注意ください。
※使用法の表記について:
WB: Western Blotting, IH: Immunohistochemistry, IC: Immunocytochemistry, IP: Immunoprecipitation,
FCM: Flow Cytometry NT: Neutralization, IF: Immunofluorescence, RIP: RNP Immunoprecipitation,
ChIP: Chromatin Immunoprecipitation, CoIP: Co-Immunoprecipitation
DB: Dot Blotting, NB: Northern Blotting, RNA FISH: RNA Fluorescence in situ hybridization
※使用法・交差性の表記について:
*: 論文で報告されております(MBLでは未確認)。詳しくはデータシートをご覧ください。
**: 導入元からの情報です(MBLでは評価中もしくは未確認)。
※保存温度の表記について: RT: 室温
※本サイトの掲載製品は、品質改良のため予告なく仕様などの変更、または販売中止となる場合がございます。あらかじめご了承ください。