For Research Use Only. Not for use in diagnostic procedures.

T-Select MHC Tetramer

I-A^b OVA₃₂₃₋₃₃₉ Tetramer -ISQAVHAAHAEINEAGR (20 tests)

For Research Use Only. Not for use in diagnostic procedures.

Background

T lymphocytes play a central role in immune system. Total T cell and T cell subset counts are measured by detection of various cell surface molecules. Enumeration of CD4⁺ antigen-specific T cells requires cognate recognition of the T cell receptor (TCR) by a class II MHC/peptide complex. This can be done using T-Select MHC Class II Tetramers which are composed of four MHC class II molecules each bound to the specific peptide^{1, 2} and conjugated with a fluorescent protein. Thus, T-Select MHC Tetramer assays allow quantitation of the total T cell population specific for a given peptide complexed in a particular MHC molecule. Furthermore, since binding does not depend on functional pathways, Tetramer-stained population includes specific CD4⁺ T cells regardless of functional status. Measurements may be performed in whole isolated lymphocyte/mononuclear blood cell or preparations. In some cases where frequency is low, it may be necessary to perform an *in vitro* cell expansion³. Specific cell staining is accomplished by incubating the sample with the T-Select MHC Tetramer reagent, then washing away excess Tetramer. The number of Tetramer positive lymphocytes is then determined by flow cytometry.

This Tetramer reagent comprises murine class II MHC I-A^b and epitope peptide derived from ovalbumin (OVA), and it can detect an I-A^b-restricted OVA₃₂₃₋₃₃₉ -specific CD4⁺ T cells. The CD4⁺ T cell epitope, OVA₃₂₃₋₃₃₉, of the OVA model antigen has been a useful tool in immunology. The OT-II transgenic mouse strain carries a TCR transgene specific for the OVA₃₂₃₋₃₃₉ peptide, and it is useful for studying T cell immunology.

A Tetramer, which is constructed with the same allele $(I-A^b)$ of interest and an irrelevant peptide, may be used as a negative control Tetramer. Alternatively, a cell population devoid of Tetramer-positive cells may be used as a negative control.

Storage Conditions

Store at 2 to 8° C. Do not freeze. Minimize exposure to light.

Precautions for Use

Please read this data sheet carefully with respect to the experimental conditions before using this product. A thorough understanding of the experimental data with regard to experimental conditions is required if you are planning to use OT-II TCR transgenic mice.

Allele: I-A^b

Peptide Sequence: OVA₃₂₃₋₃₃₉ peptide

"ISQAVHAAHAEINEAGR" derived from ovalbumin (OVA, 323-339 aa)

Usage

This reagent is for use with standard flow cytometry methodologies.

Reagents

200 μ L liquid - 10 μ L/test The Tetramer is dissolved in an aqueous buffer containing 0.5 mM EDTA, 0.2% BSA, 10 mM Tris-HCI (pH 8.0), 150 mM NaCl, and 0.09% NaN₃.

Conjugates

TS-M710-1

Streptavidin-Phycoerythrin (SA-PE) Excites at 486-580 nm Emits at 586-590 nm

TS-M710-2

Streptavidin-Allophycocyanin (SA-APC) Excites at 633-635 nm Emits at 660-680 nm

Stability

This reagent is stable until the expiration date shown on the label under the recommended storage conditions.

Reagent Preparation

No preparation is necessary. These T-Select MHC Tetramer reagents are used directly from the vial after a brief vortex on low setting.

MBL MEDICAL & BIOLOGICAL LABORATORIES CO., LTD. URL http://ruo.mbl.co.jp e-mail support@mbl.co.jp

TS-M710-1 TS-M710-2 Page 2 of 6

Evidence of Deterioration

Any change in the physical appearance of this reagent may indicate deterioration and the reagent should not be used. The normal appearance is a clear, colorless to pink (SA-PE), or light blue (SA-APC).

Mouse I-A alleles

MHC class II	I-A ^b	I-A ^d	I-A ^k	I-A ^S	I-A ^{g7}
Mouse strains	C57BL/- BXSB/Mp 129/-	BALB/c DBA/2 B10.D2	C3H/He	SJL/J B10.S	NOD

References About OVA₃₂₃₋₃₃₉

- 1) Barnden MJ, et al. Immunol Cell Biol 76: 34-40 (1998)
- 2) Moon JJ, et al. Immunity 27: 203-213 (2007)
- 3) Landais E, et al. J Immunol 183: 7949-7957 (2009)
- 4) Liao T-YA, et al. PLoS ONE 10: e0145833 (2015)

Statement of Warnings

- 1. This reagent contains 0.09% sodium azide. Sodium azide under acid conditions yields hydrazoic acid, an extremely toxic compound. Azide compounds should be flushed with running water while being discarded. These precautions are recommended to avoid deposits in metal piping in which explosive conditions can develop. If skin or eye contact occurs, wash excessively with water.
- 2. Specimens, samples and material coming in contact with them should be handled as if capable of transmitting infection and disposed of with proper precautions.
- 3. Never pipette by mouth and avoid contact of samples with skin and mucous membranes.
- 4. Minimize exposure of reagent to light during storage or incubation.
- 5. Avoid microbial contamination of reagent or erroneous results may occur.
- 6. Use Good Laboratory Practices (GLP) when handling this reagent.

Materials Required But Not Supplied

- 12 x 75 mm polypropylene test tubes
- Transfer pipettes
- Pipettors and disposable pipette tips
- Vortex mixer
- Centrifuge capable of 150 x g or 400 x g
- Aspirator
- PBS
- Red blood cell lysis reagent
- mouse CD4-FITC (clone GK1.5), MBL, PN D341-4
- 7-AAD Viability Dye, Beckman Coulter, Inc., PN A07704
- Clear Back (Human FcR blocking reagent), MBL, PN MTG-001

Procedure for Cell Preparations and Cell Suspensions

- 1. Collect lymph node, spleen or thymus and prepare a single-cell suspension according to an established protocol. Cells should be re-suspended at a concentration of 2×10^7 cells/mL. 50 μ L of sample is required for each T-Select MHC Tetramer determination.
- 2. Add 10 μL of Clear Back (human FcR blocking reagent, MBL, PN MTG-001) to each 12 x 75 mm test tube.
- 3. Add 50 μL cell suspension into each test tube (e.g. 1 $x~10^6$ cells per tube).
- 4. Incubate for 5 minutes at room temperature.
- 5. Add 10 μL of T-Select MHC Tetramer and vortex gently.
- 6. Incubate for 30-60 minutes at 2-8°C or room temperature (15-25°C) protected from light.
- 7. Add any additional antibodies (e.g. anti-mouse CD4) and vortex gently.
- 8. Incubate for 30 minutes at 2-8°C protected from light. If red blood cell lysis is necessary, lyse red blood cells using commercially available reagents.
- 9. Add 3 mL of PBS or FCM buffer (2% FCS/0.09% NaN₃/PBS).
- 10. Centrifuge tubes at 400 x g for 5 minutes.
- 11. Aspirate or decant the supernatant.
- 12. Resuspend the pellet in 500 μ L of PBS with 0.5% paraformaldehyde or formalin.
- 13. Store prepared samples at 2-8°C protected from light for a minimum of 1 hour (maximum 24 hours) prior to analysis by flow cytometry.

Technical Hints

- A. Clear Back reagent (human FcR blocking reagent) may effectively block non-specific binding caused by macrophages or endocytosis, resulting in clear staining when cells are stained with MHC Tetramer and antibodies. Please refer to the data sheet (MBL PN MTG-001) for details.
- B. A Tetramer that is constructed with the same allele of interest and an irrelevant peptide may be used as a negative control.
- C. The use of CD45 antibody and gating of the lymphocyte population are recommended in order to reduce contamination of unlysed or nucleated red blood cells in the gate.
- D. Apoptotic, necrotic, and/or damaged cells are sources of interference in the analysis of viable cells by flow cytometry. Cell viability should be determined by 7-aminoactinomycin D (7-AAD) staining; intact viable cells remain unstained (negative).
- E. Cells do not require fixation prior to analysis if the stained cells are analyzed by flow cytometry within several hours.

TS-M710-1 TS-M710-2 Page 3 of 6

Cell Expansion

Cell expansion, in the presence or absence of carboxyfluorescein succinimidyl ester (CFSE) to determine precursor frequency, is performed according to established protocols^{4, 5}. Cells should be resuspended at a final concentration of 5 x 10^6 cells/mL after expansion and harvesting. A 200 μ L sample is required for each test.

Selected References

- 1. Altman JD, et al. Science 274: 94-96 (1996)
- 2. McMichael AJ and O 'Callaghan CA, *J Exp Med* **187**: 1367-1371 (1998)
- 3. Nepom GT, et al. Arthritis Rheum 46: 5-12 (2002)
- 4. Lyons AB and Doherty KV, *Current Protocols in Cytometry* **2**: 9.11.1-9.11.9 (1998)
- 5. Novak EJ, et al. J Clin Ivest 104: R63-R67 (1999)

Related Products

T-Select Mouse class I OVA Tetramers

	H-2K ^b OVA Tetramer-SIINFEKL-PE
	H-2K ^b OVA E1 Tetramer-EIINFEKL-PE
TC MEAD 1	H 2K ^b OVA C4 Totramor SUCEEKL DE

- TS-M542-1 H-2K[°] OVA G4 Tetramer-SIIGFEKL-PE TS-M543-1 H-2K^b OVA Q4H7 Tetramer-SIIQFEHL-PE
- IS-M543-1 H-2K UVA Q4H7 letramer-SliQFEHL-P

T-Select Mouse Class II Tetramers

 $\begin{array}{lll} {\sf TS-M703-1} & {\sf I-A}^d \mbox{ OVA}_{323-339} \mbox{ Tetramer-PE} \\ {\sf TS-M704-1} & {\sf I-A}^b \mbox{ MOG}_{35-55} \mbox{ Tetramer-PE} \\ {\sf TS-M705-1} & {\sf I-A}^b \mbox{ FMLV}_{123-141} \mbox{ Tetramer-PE} \\ {\sf TS-M705-1} & {\sf I-A}^b \mbox{ EAT-}_{61-20} \mbox{ Tetramer-PE} \\ {\sf TS-M710-1} & {\sf I-A}^b \mbox{ OVA}_{323-339} \mbox{ Tetramer-PE} \\ {\sf TS-M715-1} & {\sf I-A}^b \mbox{ OVA}_{323-339} \mbox{ Tetramer-PE} \\ {\sf TS-M715-1} & {\sf I-A}^b \mbox{ OVA}_{323-339} \mbox{ Tetramer-PE} \\ {\sf TS-M715-1} & {\sf I-A}^b \mbox{ OVA}_{323-339} \mbox{ Tetramer-PE} \\ {\sf TS-M716-1} & {\sf I-A}^b \mbox{ Influenza A NP}_{311-325} \mbox{ Tetramer-PE} \\ {\sf TS-M720-1} & {\sf I-A}^d \mbox{ Influenza A NP}_{311-325} \mbox{ Tetramer-PE} \\ {\sf TS-M721-1} & {\sf I-A}^b \mbox{ L. monocytogenes LLO}_{190-201} \mbox{ Tetramer-PE} \\ {\sf TS-M722-1} & {\sf I-A}^b \mbox{ ncuse 2W1S \mbox{ Tetramer-PE} \\ {\sf TS-M724-1} & {\sf I-A}^b \mbox{ LCMV GP}_{126-140} \mbox{ Tetramer-PE} \\ \end{array}$

T-Select Human Class II Tetramers

TS-M801-1	HLA-DRB1*01:01 human CLIP ₁₀₃₋₁₁₇ Tetramer-PE
TS-M803-1	HLA-DRB1*01:01 EBV EBNA1 ₅₁₅₋₅₂₇ Tetramer-PE
TS-M813-1	HLA-DRB1*01:01 Fel d 1 ₄₉₋₆₆ Tetramer-PE
TS-M802-1	HLA-DRB1*01:01 HIV gag ₂₉₅₋₃₀₇ Tetramer-PE
TS-M815-1	HLA-DRB1*01:01 HTLV-1 Tax ₁₅₅₋₁₆₇ Tetramer-PE
TS-M804-1	HLA-DRB1*01:01 Influenza HA ₃₀₆₋₃₁₈ Tetramer-PE
TS-M809-1	HLA-DRB1*04:01 human CLIP ₁₀₃₋₁₁₇ Tetramer-PE
TS-M811-1	HLA-DRB1*04:01 GAD65 ₅₅₅₋₅₆₇ Tetramer-PE
TS-M810-1	HLA-DRB1*04:01 Influenza HA ₃₀₆₋₃₁₈ Tetramer-PE
TS-M814-1	HLA-DRB1*04:01 Lol p 1 ₁₀₅₋₁₁₇ Tetramer-PE
TS-M805-1	HLA-DRB1*04:05 human CLIP ₁₀₃₋₁₁₇ Tetramer-PE
TS-M806-1	HLA-DRB1*04:05 Influenza HA ₃₀₆₋₃₁₈ Tetramer-PE
TS-M807-1	HLA-DRB1*11:01 human CLIP ₁₀₃₋₁₁₇ Tetramer-PE
TS-M808-1	HLA-DRB1*11:01 Influenza HA ₃₀₆₋₃₁₈ Tetramer-PE
TS-M812-1	HLA-DRB1*11:01 TT p2 ₈₂₉₋₈₄₄ Tetramer-PE
TS-M816-1	HLA-DRB1*15:01 human CLIP ₁₀₃₋₁₁₇ Tetramer-PE
TS-M818-1	HLA-DRB1*15:01 Bet v 1 ₁₄₂₋₁₅₆ Tetramer-PE
TS-M817-1	HLA-DRB1*15:02 human CLIP ₁₀₃₋₁₁₇ Tetramer-PE

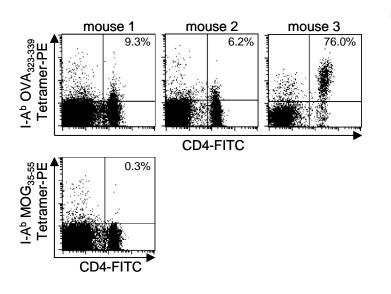
T-Select PEPTIDEs

TS-5001-P	H-2K ^b OVA peptide, SIINFEKL
TS-M701-P	I-A ^b HBc helper peptide
TS-M702-P	I-A ^d Tetanus toxin p30 helper peptide
TS-M703-P	I-A ^b /I-A ^d OVA helper peptide
TS-M704-P	I-A ^b MOG ₃₅₋₅₅ peptide
TS-M707-P	I-A ^b ESAT-6 ₁₋₂₀ peptide
TS-M708-P	I-A ^k HEL peptide
TS-M716-P	I-A ^b Influenza NP ₃₁₁₋₃₂₅ peptide
TS-M721-P	I-A ^b L. monocytogenes LLO ₁₉₀₋₂₀₁ peptide
TS-M722-P	I-A ^b mouse 2W1S peptide
TS-M724-P	I-A ^b LCMV GP ₁₂₆₋₁₄₀ peptide
TS-M801-P	Human CLIP ₁₀₃₋₁₁₇ peptide
TS-M802-P	HLA-DRB1*01:01 HIV gag ₂₉₅₋₃₀₇ peptide
TS-M803-P	HLA-DRB1*01:01 EBV EBNA1 ₅₁₅₋₅₂₇ peptide
TS-M804-P	Influenza HA ₃₀₆₋₃₁₈ peptide
TS-M811-P	HLA-DRB1*04:01 GAD65 ₅₅₅₋₅₆₇ peptide
TS-M812-P	HLA-DRB1*11:01 TT p2 ₈₂₉₋₈₄₄ peptide
TS-M813-P	HLA-DRB1*01:01 Fel d 1 ₄₉₋₆₆ peptide
TS-M814-P	HLA-DRB1*04:01 Lol p 1 ₁₀₅₋₁₁₇ peptide
TS-M815-P	HLA-DRB1*01:01 HTLV-1 Tax ₁₅₅₋₁₆₇ peptide
TS-M818-P	HLA-DRB1*15:01 Bet v 1 ₁₄₂₋₁₅₆ peptide

<u>Kits</u>

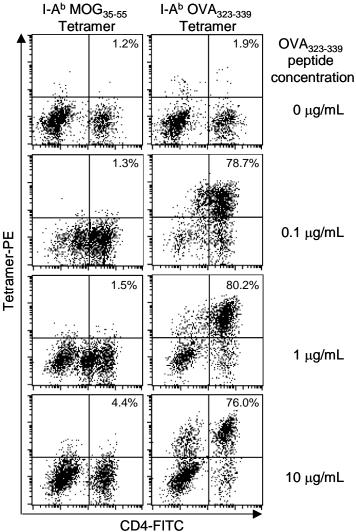
AM-1005M	IMMUNOCYTO Cytotoxicity Detection Kit
	QuickSwitch [™] Quant H-2K ^b Tetramer Kit-PE
TB-7401-K1	QuickSwitch™ H-2K ^b Tetramer Kit-PE

<u>Others</u>


D341-4	mouse CD4-FITC (GK1.5)
D271-4	mouse CD8-FITC (KT15)
D271-5	mouse CD8-PE (KT15)
D271-A64	mouse CD8-Alexa Fluor [®] 647 (KT15)
K0221-3	anti-mouse TCR DO11.10 (KJ1.26)
K0221-5	anti-mouse TCR DO11.10-PE (KJ1.26)
K0222-3	anti-mouse TCR 3DT-52.5 (KJ12.98)
A07704	7-AAD Viability Dye
MTG-001	Clear Back (Human FcR blocking reagent)

Please check our web site (<u>http://ruo.mbl.co.jp</u>) for up-to-date information on products and custom MHC Tetramers.

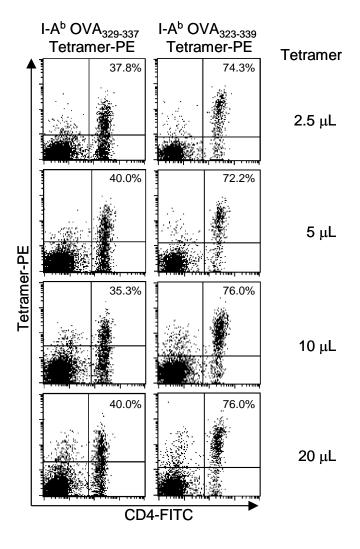
TS-M710-1 TS-M710-2 Page 4 of 6


Experimental data 1: In vitro peptide stimulation of OVA₃₂₃₋₃₃₉ specific TCR transgenic mice (OT-II). The OT-II transgenic mouse strain has a TCR transgene specific for the OVA₃₂₃₋₃₃₉ peptide, and it is bred and maintained in the C57BL/6 genetic background. OT-II splenocytes were stained with the I-A^b OVA₃₂₃₋₃₃₉ Tetramer. Results showed that splenocytes from mouse 3 were recognized by the I-A^D OVA₃₂₃₋₃₃₉ Tetramer, whereas splenocytes from mouse 1 and 2 were not (results 1-1). This analysis revealed significant individual differences in staining with this Tetramer. We speculated that these differences were derived from low OVA-specific TCR expression. Therefore, splenocytes were specifically stimulated with OVA323-339 peptide to induce TCR upregulation. Splenocytes from OT-II mice were stimulated with 0.1-10 µg/mL OVA323-339 peptide for 6 days in the presence of 50 U/mL recombinant human IL-2. Staining with MHC class II-Tetramer was performed after stimulation (results 1-2). Data were analyzed by double gating on the lymphocyte and viable cell population (7-AAD negative). The frequency of MHC Tetramer⁺ and CD4⁺ cells is shown as a percentage of the total CD4⁺ T cells.

Results 1-1: Tetramer staining of freshly isolated OT-II splenocytes.

Splenocytes from mouse 3 were recognized by the $I-A^b$ OVA₃₂₃₋₃₃₉ Tetramer, whereas splenocytes from mouse 1 and 2 were not.

Results 1-2: Tetramer staining of peptide -stimulated OT-II splenocytes (mouse 1) in culture. Limited staining was observed in freshly isolated splenocytes. However, the I-A^b OVA₃₂₃₋₃₃₉ Tetramer-positive CD4⁺ T cells could be detected after *in vitro* stimulation with the OVA₃₂₃₋₃₃₉ peptide. Tetramer-positive CD4⁺ T cells were not detected in the negative control (I-A^b MOG₃₅₋₅₅ Tetramer).

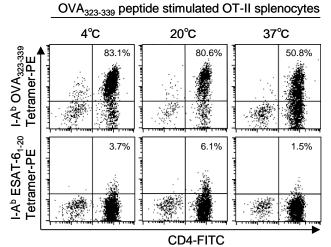

TS-M710-1 TS-M710-2 Page 5 of 6

Experimental data 2: Comparison of populations observed by staining with two variants of I-A^b OVA Tetramer.

OT-II splenocyte preparations (mouse 3) were stained with two variants of I-A^b OVA Tetramer (I-A^b OVA₃₂₃₋₃₃₉ Tetramer-PE and I-A^b OVA₃₂₉₋₃₃₇ Tetramer-PE).

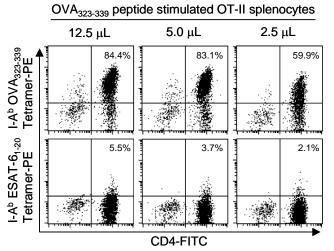
<Peptide sequence of I-A^b OVA Tetramer> OVA₃₂₃₋₃₃₉ :ISQAVHAAHAEINEAGR OVA₃₂₉₋₃₃₇ :AAHAEINEA

Results 2: Staining of freshly isolated OT-II splenocytes (mouse 3) with two Tetramer variants. The frequency of MHC Tetramer⁺ and CD4⁺ T cells is shown as a percentage of total CD4⁺ T cells.


Although both I-A^b OVA Tetramer variants reacted with OT-II splenocytes (mouse 3), reactivity to the short epitope peptide I-A^b OVA₃₂₉₋₃₃₇ Tetramer was lower than that observed with the I-A^b OVA₃₂₃₋₃₃₉ Tetramer.

Experimental data 3: Determination of reaction temperature and Tetramer concentration.

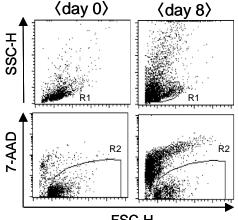
OT-II splenocytes (mouse 1) were stimulated with 1 μ g/mL of OVA₃₂₃₋₃₃₉ peptide for 6 days in the presence of 50 U/mL of recombinant human IL-2. The splenocytes were stained with MHC class II Tetramer after stimulation. Data were analyzed by double gating on the lymphocyte and viable cell population (7-AAD negative). The frequency of MHC Tetramer⁺ and CD4⁺ T cells is shown as a percentage of total CD4⁺ T cells.


Results 3-1: Determination of the reaction temperature (Tetramer, 5 µL/tube)

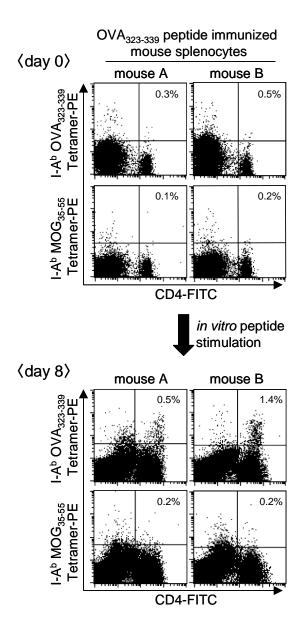
The recommended I-A^b OVA₃₂₃₋₃₃₉ Tetramer assay conditions were determined as incubation for 60 min at 4°C, 20°C, or 37°C. Total reaction volume is 50 μ L.

Results 3-2: Determination of the Tetramer concentration (reaction temperature, 4°C)

The optimal, recommended volume of I-A^b OVA₃₂₃₋₃₃₉ Tetramer was determined as approximately 5 μ L/tube in a final reaction volume of 50 μ L. Thus, we decided to recommend this Tetramer concentration.


TS-M710-1 TS-M710-2 Page 6 of 6

Experimental data 4: C57BL/6 mice immunized with OVA₃₂₃₋₃₃₉ peptide.


C57BL/6 mice were intraperitoneally immunized with 100 nmol OVA323-339 peptide (ISQAVHAAHAEINEAGR, MBL PN TS-M703-P) and 10 µg cholera toxin in complete Freund's adjuvant. A second similar immunization was performed 10 days later. Splenocytes were prepared from the immunized mice 11 days after immunization. Splenocytes were stained with MHC class II Tetramer on day 0. An aliquot of the splenocytes was stimulated with 1 µg/mL OVA323-339 peptide. After 48 hours, interleukin-2 (IL-2) was added to the cultures to a final concentration of 100 U/mL. Staining for MHC class II Tetramer was performed on day 8.

Results 4:

The lymphocyte population was defined by an FSC/SSC gate (R1), and the viable cell population was defined by an FSC/7-AAD (R2). Data were analyzed by double gating on the lymphocyte and viable cell population (R1 and R2). The frequency of MHC Tetramer⁺ and CD4⁺ T cells is shown as a percentage of total CD4⁺ T cells.

FSC-H

Limited staining was observed in freshly isolated splenocytes. However, the I-A^b OVA₃₂₃₋₃₃₉ Tetramer-positive CD4⁺ T cells could be detected after *in vitro* stimulation with the OVA₃₂₃₋₃₃₉ peptide. Tetramer-positive CD4⁺ T cells were not detected in the negative control (I-A^b MOG₃₅₋₅₅ Tetramer).

T-Select MHC Tetramers use patented technology (US patent No. 5,635,363, French application No. FR9911133, and Japanese patent No. P3506384) of Beckman Coulter, Inc.. MBL manufactures and distributes these products under license from Beckman Coulter, Inc..