Page 1 of 2	² Not for use in diagnostic procedures.					
MONOCLONAL	ANTIBODY					
CD29/β1-Integrin						
Code No. D050-3	Clone AG89	Subclass Mouse IgG1	Quantity 100 μg	Form Lyophilized		

For Research Use Only.

BACKGROUND: The integrin family of adhesion molecules participate in important cell-cell and cell-extracellular matrix interactions in a diverse range of biological processes. Integrins are heterodimers consisting of a α subunit and β subunit. Both α and β subunits are transmembrane proteins with large extracellular domains (>100 kDa for α subunit and >75 kDa for β subunit) that interact with extracellular matrix proteins and relatively small cytoplasmic domains (50 amino acids or less, except for the β 4 subunit) that interact with cytoskeletal proteins. The adhesiveness of integrins is dynamically regulated in response to cytoplasmic signals, termed "inside-out" signaling. It has been reported that, upon ligand binding, integrins regulate many intracellular signaling pathways that involve cytoplasmic alkalization, intracellular Ca²⁺ fluctuation, inositol lipid metabolism, protein kinase C, MAP kinase and phosphatidyl inositol kinase. Anti-integrin monoclonal antibody, AG89, reacts with CD29/integrin ß1 chain regardless of the subunit. AG89 can recognize resting site β 1 integrin on the cells, but the reactivity is increased ~2-fold upon integrin activation by anti-activating $\beta 1$ antibodies and ~3-fold by Mn²⁺. Furthermore, occupation of the ligand-binding pocket by a soluble ligand (RGD peptide for $\alpha 5\beta 1$ and CS-1 peptide for $\alpha 4\beta 1$) resulted in maximum binding of AG89. The epitope for AG89 lies within residues 426-587.

D050-3

- **SOURCE:** This antibody was purified from mouse ascites fluid using protein A agarose. This hybridoma was established by fusion of mouse myeloma cell P3U1 with Balb/c mouse splenocyte immunized with G-361 human melanoma cell line.
- **FORMULATION:** This antibody is lyophilized form. Prepare a stock solution by dissolving the lyophilized antibody in 100 μ L of distilled water. After reconstitution, the IgG concentration should be 1 mg/mL in PBS (pH 7.2)/1% sucrose. No preservative contained.
- **STORAGE:** This antibody is stable for one year from the date of shipment when stored at 4°C. After reconstitution, avoid repeated freezing and thawing. For storage, prepare appropriate aliquots and freeze them at -20°C.
- **REACTIVITY:** This antibody reacts with human β 1-Integrin on Flow cytometry.

INTENDED USE:

For Research Use Only. Not for use in diagnostic procedures.

APPLICATIONS:

Western blotting; 10 µg/mL for chemiluminescence detection system

Immunoprecipitation; Not tested

It is reported that this monoclonal antibody can be used in Immunoprecipitation in the reference number 4).

Immunohistochemistry; Not tested

Immunocytochemistry; Not tested

Flow cytometry; 10 µg/mL (final concentration)

Detailed procedure is provided in the following **PROTOCOLS**.

SPECIES CROSS REACTIVITY:

Species	Human	Mouse	Rat
Cells	MOLT-4, Jurkat	Not Tested	Not Tested
Reactivity on FCM	+		

REFERENCES:

- 1) Nishiuchi. R., et al. PNAS 102, 1939-1944 (2005)
- 2) Shi, Q., et al. Mol. Biol. Cell 14, 4306-4315 (2003)
- 3) García, J. A., et al. J. Biol. Chem. 273, 34710-34715 (1998)
- 4) Tsuchida. J., et al. J. Cell Sci. 111, 1759-1766 (1998)
- 5) Takagi. J., et al. J. Biochem. 121, 914-921 (1997)
- 6) O'Toole, T.E., et al. J. Cell Biol. 124, 1047-1059 (1994)

Clone AG89 is used in the reference number 1) - 5).

RELATED PRODUCTS:

- D050-5 PE labeled CD29/β1-Integrin (AG89)
- K0099-3 Anti-MIBP (5B4.7)
- D202-3 mouse CD11b (1C4)
- D202-4 FITC labeled mouse CD11b (1C4)
- M100-3 mouse CD11c (223H7)
- M100-4 FITC labeled mouse CD11c (223H7)
- M100-6 Biotin labeled mouse CD11c (223H7)
- M109-3 mouse CD61 (1-55-4)
- K0046-3 Anti-mouse Integrin α7 (3C12)
- K0046-5 PE labeled anti-mouse Integrin α 7 (3C12)
- K0047-3 Anti-mouse Integrin α7 (6A11)

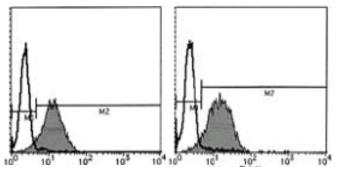
PROTOCOLS: SDS-PAGE & Western Blotting

1) Wash the cells 3 times with PBS and suspend with 10 volume of cold Lysis buffer (50 mM Tris-HCl, pH 7.2,

MBL MEDICAL & BIOLOGICAL LABORATORIES CO., LTD. URL <u>https://ruo.mbl.co.jp</u> e-mail <u>support@mbl.co.jp</u>, TEL 052-238-1904 250 mM NaCl, 0.1% NP-40, 2 mM EDTA, 10% glycerol) containing appropriate protease inhibitors. Incubate it at 4° C with rotating for 30 minutes, then sonicate briefly (up to 10 seconds).

- 2) Centrifuge the tube at 12,000 x g for 10 minutes at 4°C and transfer the supernatant to another tube. Measure the protein concentration of the supernatant and add the cold Lysis buffer to make 8 mg/mL solution.
- 3) Mix the sample with equal volume of Laemmli's sample buffer.
- 4) Boil the samples for 3 minutes and centrifuge. Load 10 μ L of the sample per lane in a 1 mm thick SDS-polyacrylamide gel for electrophoresis.
- 5) Blot the protein to a polyvinylidene difluoride (PVDF) membrane at 1 mA/cm² for 1 hour in a semi-dry transfer system (Transfer Buffer: 25 mM Tris, 190 mM glycine, 20% MeOH). See the manufacture's manual for precise transfer procedure.
- 6) To reduce nonspecific binding, soak the membrane in 10% skimmed milk (in PBS, pH 7.2) for 1 hour at room temperature, or overnight at 4°C.
- 7) Incubate the membrane with primary antibody diluted with PBS, pH 7.2 containing 1% skimmed milk as suggest in the **APPLICATIONS** for 1 hour at room temperature. (The concentration of antibody will depend on condition.)
- 8) Wash the membrane with PBS-T [0.05% Tween-20 in PBS] (5 minutes x 3 times).
- 9) Incubate the membrane with the 1:10,000 HRP-conjugated anti-mouse IgG (MBL; code no. 330) diluted with 1% skimmed milk (in PBS, pH 7.2) for 1 hour at room temperature.
- 10) Wash the membrane with PBS-T (10 minutes x 3 times).
- 11) Wipe excess buffer on the membrane, then incubate it with appropriate chemiluminescence reagent for 1 minute.
- 12) Remove extra reagent from the membrane by dabbing with paper towel, and seal it in plastic wrap.
- 13) Expose to an X-ray film in a dark room for 3 minutes.
- 14) Develop the film as usual. The condition for exposure and development may vary.

Flow cytometric analysis for floating cells


We usually use Fisher tubes or equivalents as reaction tubes for all step described below.

- 1) Wash the cells 3 times with washing buffer [PBS containing 2% fetal calf serum (FCS) and 0.1% NaN₃].
- 2) Resuspend the cells with washing buffer (5×10^6 cells/mL).
- 3) Add 50 μ L of the cell suspension into each tube, and centrifuge at 500 x g for 1 minute at room temperature (20~25°C). Remove supernatant by careful aspiration.
- 4) Add 10 μ L of normal goat serum containing 1 mg/mL normal human IgG and 0.1% NaN₃ to the cell pellet after tapping. Mix well and incubate for 5 minutes at room temperature.
- 5) Add 30 μL of primary antibody diluted as suggest in the **APPLICATIONS** to cell pellet and gently mix then incubate for 30 minutes at room temperature (The

concentration of antibody will depend on condition).

- 6) Add 1 mL of the washing buffer followed by centrifugation at 500 x g for 1 minute at room temperature. Remove supernatant by careful aspiration.
- 7) Add 30 μ L of 1:100 FITC conjugated anti-mouse IgG (MBL; code no. IM-0819) diluted with the washing buffer. Mix well and incubate for 15 minutes at room temperature.
- 8) Add 1 mL of the washing buffer followed by centrifugation at 500 x g for 1 minute at room temperature. Remove supernatant by careful aspiration.
- 9) Resuspend the cells with 500 μ L of the washing buffer and analyze by a flow cytometer.

(Positive controls for Flow cytometry; MOLT-4, Jurkat)

Flow cytometric analysis of CD29/β1 Integrin expression on MOLT-4 (left) and Jurkat (right). Open histograms indicate the reaction of isotypic control to the cells. Shaded histograms indicate the reaction of D050-3 to the cells.